1.基于PLC的水塔水位控制系统
在传统的水塔/水箱供水的基础上,加入了PLC及液压变送器等器件.利用PLC和组态软件来实现水塔水位的控制.提供了一种实用的水塔水位控制方案。
控制系统组成1.系统的工作原理供水系统的基本原理如图1所示,水位闭环调节原理是:通过在水塔中的三个液压变送器,将水位值变换为4~20 mA电流信号进入PLC,把该信号和PLC中的设定值的程序进行比较,并执行较后程序,通过水泵的开关对水塔中的水位进行自动控制。当PLC出现故障时,还有一套手动控制来进行对水塔水位控制。
手动控制采用交流接触器。[img] /42-2/2449.htm。
4.基于PLC的水塔水位控制系统设计
PLC是可编程控制器,但是一个水塔水位的控制系统,不用plc也可以实现自动控制及代保护系统。
如果有多台水泵奇2113/偶向水塔内供水用plc是很有必要的,但如果只有一台水泵,小弟看来是不需要PLC了,因为PLC也贵狠5261了。不管用什么方法,多采用几组接点来控制 保护 声 光信号是相结可靠的。
水位下限可分为:正常水泵4102启动接点或值——备用水泵启动接点并发信号或值——低水位两台泵同时启动接点或值《并发声光信号》水位上限:额定水位水泵停止接点或值——高水1653位报警接点或值《代保护——断开两台水泵电源并发发声光信号》——水位超高接点或值《断开总电源接触器回或空开并打开电磁阀放水至正常水位》。另外电机保护可靠低价位的保护-熔断器-过负荷-过压-温度过高-接短路保护。
跟据实际情况设计。让你风笑了,你答的资料太少有些什么设备不清晰,所以只能给你这点你可能用不上的东东了。
问你一句:你是不是要PLC控制原理梯行设计图。
5.PLC控制的论文分那几步,给我个目录
用PLC实现分段液位的控制 摘要:本文主要介绍如何使用PLC实现多段液位的设定、显示、报警和液位的自动控制。
关键词: PLC 液位 监控 在众多生产领域中,经常需要对贮槽、贮罐、水池等容器中的液位进行监控,以往常采用传统的继电器接触控制,使用硬连接电器多,可靠性差,自动化程度不高,目前已有许多企业采用先进控制器对传统接触控制进行改造,大大提高了控制系统的可靠性和自控程度,为企业提供了更可靠的生产保障。本文在此介绍一种采用可编程控制器(PLC)对液位进行监控的一种方法,其电路结构简单,投资少(可利用原有设施改造),监控系统不仅自动化程度高,还具有在线修改功能,灵活性强,适用于多段液位监控场合。
1.控制要求 控制系统可以根据生产的需要将液位分为多段来设定,并分段显示,当液位为最低限时自动启动料泵加液,液位到达设定值时发出声光报警,并停泵;操作人员可通过确认按钮解除音响报警信号,闪烁灯光转平光;系统具有手动/自动两种控制方式,并设有试验功能。 2.PLC选型 目前在国内市场上有从美国、德国、日本等国引进的多种系列PLC,国内也有许多厂家组装、开发数十种PLC,故PLC系列标准不一,功能参差不齐,价格悬殊。
在此情况下,PLC的选择应着重考虑PLC的性能价格比,选择可靠性高,功能相当,负载能力合适,经济实惠的PLC。本文介绍以四段液位控制对象为例,据对多种因素的分析比较及监控系统输入、输出点数的要求,选用日本立石(OMRON)公司C20P型PLC。
3.系统硬件配置 为实现液位的手动/自动控制,需要输入口12点,输出口8点,选用C20P 20点I/O单元的PLC,输入光电隔离,输出继电器隔离,负载能力强;液位检测采用干簧管传感器,手动/自动转换、运行/试验转换和液位设定采用双位旋钮,手动启泵、停泵和确认、试验采用常开按钮;输出选用电子音响报警器和24V直流指示灯、继电器。参见图一系统硬件配置图。
图一 系统硬件配置图 为节省输入口数量,节省投资,本系统运行/试验功能的转换采用了对I/O模块接线的优化,使PLC输入模块中1个输入节点起到2个输入节点的作用,完成PLC工作在两种方式下的I/O功能。参见图二I/O模块接线的优化。
图二 I/O模块接线的优化 系统正常运行时,运行/试验转换旋钮S接通1-3接点,各试验按钮不起作用,液位信号由各干簧管传感器传输给PLC;系统处于试验状态时,S接通1-2接点,各传感器输入信号不起作用,此时可用各试验按钮模拟各段液位信号传输给PLC。两种控制方式下的两个信号共用一个输入节点,成倍提高I/O端口的利用率,节省I/O点数。
4.系统软件设计 4.1 控制程序流程图 图三 系统流程图 4.2 编程说明 = 1 \* GB3 ① 本系统为液位的双位控制系统。液位可分四段设定和显示,在最低液位时自动启泵,当液位到达设定值时自动停泵。
= 2 \* GB3 ② 采用IL/ILC分支指令,通过0008旋钮实现手动/自动两种功能的选择,当0008旋钮闭合时,自动指示灯亮,系统执行IL/ILC分支内程序,完成自动监控;当0008旋钮打开时,手动指示灯亮,系统执行分支外程序,通过0010、0011旋钮实现手动启泵、停泵。 = 3 \* GB3 ③ 液位由0004~0007旋钮分最低、较低、较高、最高四段设定,系统设置由低到高的优先权,即当多个设定旋钮同时闭合时,低液位设定优先。
= 4 \* GB3 ④ 采用干簧管检测液位时,当液位到达检测点时其触点闭合,指示灯点亮;液位离开检测点时其触点打开,为保证相应测量段指示灯不立即熄灭及不受液位波动的影响,每段指示灯的控制均采用KEEP保持指令,只有当液位上升或下降到相邻段时指示灯才熄灭。 = 5 \* GB3 ⑤ 当液位到达检测点时,液位指示灯闪烁,灯光闪烁因子采用内部闪烁内标1902,以1S为周期闪烁;若液位到达设定值时,自动停泵,并设置电子音响报警,报警声设计为响3S停2S,循环30S后自停,或在30S内按0009确认按钮停音响,指示灯传平光。
电子音响报警和泵的启停同样考虑液位的波动影响,设计时采用KEEP保持指令和DIFU微分指令联合使用。 = 6 \* GB3 ⑥ 首次开车时,液位低于或高于最低液位时,需先手动启泵,再切换成自动运行;或先进入试验方式,按最低液位试验按钮启动料泵,再进入自动运行方式。
4.3 PLC梯形图 图四 PLC梯形图 参考文献:1.OMRON可编程序控制器操作手册 2.扬唯实.用PLC实现水位监控.自动化仪表.2001(3)。
转载请注明出处众文网 » plc液位控制毕业论文